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Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations
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For the study of the behavior of noisy neuronal models, Rodriguez and Tuckwell have introduced an elegant
and systematic method which consists of replacing the system of stochastic differential equations with a system
of deterministic equations representing the dynamics of the means, variances, and covariance of the state
variables[R. Rodriguez and H.C. Tuckwell, Phys. Rev.58, 5585 (1996]. In this work, we first report a
modification of their method in the case of the FitzHugh-Nagumo model which enhances the accuracy of the
approximation without including higher order moments. This method is then combined with a self-consistency
argument in order to better characterize the behavior of the underlying stochastic processes through the
computation of approximate auto- and cross-correlation functions of the state variables. Finally, we argue that
the moments’ equations can also reveal the existence of stochastic bifurcations, i.e., qualitative changes in the
dynamics of stochastic systems.
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[. INTRODUCTION stochastic system, the change in a parameter value leads to a
qualitative change in the stationary solution of the corre-
Noise can significantly alter the response of neurons andponding Fokker-Planck equation. However, the analysis of
it has been postulated that this effect may play a functionasuch bifurcations remains arduous as there are no general
role in signal processing in nervous systerk This has in  algebraic characterizations of such changes as there exist, for
turn motivated theoretical investigations aiming to determindnstance, for describing local bifurcations of deterministic
the mechanisms underlying the influence of noise, using aystems. Nonetheless, this suggests that it may be possible to
wide variety of models and approachigs3], such as, for capture phenomenological stochastic bifurcations as deter-
instance, first passage time analysis of integrate-and-firministic bifurcations in an appropriately defined determinis-
models[4,5] and other reduced stochastic modg$, and  tic approximation. The purpose of the present work is to
mean firing rate approximations of FitzHugh-Nagumodefine such an approximation and apply it to the study of the
(FHN) and Hodgkin-Huxley(HH) models[7,8]. stochastic bifurcation of the FHN model as the noise inten-
In a previous study9], we reported a different class of sity is increased.
noise induced phenomena by examining the influence of Our starting point is Rodriguez and Tuckwel(&®T’s)
noise directly on the membrane potential of the HH modelefficient and systematic method to compute the dynamics of
rather than on its discharge rate. More precisely, we obthe moments of the model variabl¢s1-13. More pre-
served that, at low noise levels, the stationary membraneisely, their approach was to assume that when the fluctua-
potential distribution takes on a Gaussian form clusteredion is small, the distribution of the state variables of a sys-
around the resting state, while at high noise intensities, item takes on a Gaussian shape. Under this assumption,
takes on a bimodal form stretching out well beyond the firingstatistical estimates sampled from simulations of a large net-
threshold, with the transition between the two regimes takingvork of coupled stochastic differential equations are re-
place in a relatively narrow range of noise. Furthermore, weplaced with a system of purely deterministic differential
argued that such a noise induced change in the membramguations for the first and second order moments. They have
potential distribution could be of functional significance be-formulated the moments’ equations successively for a gen-
cause it was responsible for the noise enhanced dischargeal system{11], the FHN model[12], and the HH model
timing precision reported by Pet al. [7]. [13]. In all models, their approximation proved to be in ex-
However, despite evidence of its significance, to ourcellent agreement with transient behavior of simulations of
knowledge the main analysis of such noise induced transithe stochastic system at low noise amplitude. However, as
tions remains based on numerical investigation. The purpostey have pointed out, their approximation may break down
of this paper is to develop a semianalytical method to capturafter some time duration. For this reason, their method is not
such noise induced changes and illustrate it by showing thaiptimally suited for analyzing the asymptotic behavior of
the FHN model also undergoes a noise induced transitionoisy neuron models. We therefore start by modifying their
similar to the HH model. method to adapt it to the analysis of stationary distribution of
The main guiding point in our analysis is that the noisestate variables in excitable noisy neuron models. Then, we
induced transition if9] is strongly reminiscent of phenom- show that deterministic bifurcations in these revised mo-
enological stochastic bifurcatiod0], that is when, in a ments equations can be used to characterize the phenomeno-
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logical stochastic bifurcation in the noisy FHN. entirely characterized by their first and second order mo-
This paper is organized as follows. First, we compare ouments(i.e., the means, the variances, and the covariances

modified moments equation of the FHN model with RT's Then using a second order Taylor expansion of the expres-

original equations in Sec. Il. Second, in Sec. lll, we examinesions of the moments ofandy, and taking advantage of the

the self-consistency of moments equations, and using it, wéact that odd ordered moments are zero, they derive the equa-

compute auto- and cross correlations of the model variablesions for the moments as

Third, we investigate the correspondence between the deter-

ministic bifurcations of moments equations and the phenom-

enological stochastic bifurcation of the FHN in Sec. IV. Fi- dm 1

nally, we discuss the results in Sec. V. Furthermore, gp — ©(M1:M2,S)=A(My,My) + 5 Ax(my,mg) Sy +1,

Appendix A is devoted to technical aspects pertaining to the

moments equations.

dm,
Il. MOMENTS OF THE FITZHUGH-NAGUMO MODEL gt~ Fa(Mi,mz)=B(my,my),
The standard FHN model receiving white Gaussian noise
is described by the following stochastic differential equation, ds,
H:Fs(ml,slyclz)
d

X
dt - AxYIFIHED), — 2[A (M. M) Sy + A (Mg, my)Cyl + 02,

dy
—Z=B(x,y), 1 ds;
g; ~ B(x.Y) @ 5t = F4(m2,Sz,C19) = 2[By(My, mz) i+ By(my,my) Sy],

where functionsA(x,y)=ax>+bx?+cx+hy and B(x,y)
=ex+fy+g and the noise tern§(t) satisfies botte[ £(t) ]
=0 andE[&(t)é(s)]=028(t—s).

As a starting point, we remind Rodriguez and Tuckwell’s
(RT) method as applied to the noisy FHN mofi&d]. These
authors first assume that the distributions of the variables

dCy,
T:FS(mlvslrSZiCﬂ)

=By (mg,my)S;+Ay(my,my)S,

take on approximately Gaussian forms so that they can be +[Ax(my,my) +By(my,my) [Cyp, (2
0.4
0.2
= FIG. 1. Dynamics of moments derived under
S the RT and G method in an excitable FHN model.
0 . ; . :
Time evolution ofm, is shown in the top left
panel. Each curve is the solution of the G method
'0'2100 (thick solid lines, RT method (thick broken
lineg), and an estimate from simulations of 1000
04 units (thin solid lineg. m, (top right pane), S;
(middle left panel, S, (middle right panel and
0.08 C,., (bottom panelare plotted in respective pan-
_ 0.8 els. All abscissas are time in milliseconds and
“2 0.04 ordinates are in arbitrary units. Noise intensity
o=0.05 and constant curreht=0. Model pa-
0.02 ] / rameters were chosen to be identical wjifl2],
0 0 that is, a=-0.5, b=0.55 ¢c=-0.05 e
0 100 200 300 400 0 100 200 300 400 ~0.015, f= —0.003, g=0, andh=—1. Initial
fime fime conditions were chosem;(0)=m,(0)=1, and
0.003 T $,(0)=S,(0)=C,,(0)=0. The computations
0.002 ! ] were carried out using the fourth order Runge-
o Kutta method with a time step of 0.1 for the ap-
G 0.001 1 proximations and the standard Euler method with
a time step of 0.01 for the simulations. Similar
0 results were obtained with smaller time steps.
-0.001
0 100 200 300 400

time
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where meansn,;=E[x] and m,=E[y] are the first order I1l. SELF-CONSISTENCY AND THE CORRELATION
moments, and varianceS; =E[(x—m,)?] and S,=E[(y MATRIX
—m,)?] and covarianceC;,=E[(x—m;)(y—m,)] are the
second order moments. The functiohg, Ay, A,,, and so
on, are the first and second partial derivatives with respect to There are two methods for computing the first and second
x andy. order moments of the state variables of Ef): either di-

In our analysis, we follow RT’s assumption that the dis-rectly from the differential equations for the moments, or by
tributions are approximately Gaussian, however, we evaluatadding up the contribution of the different points in the dis-
the moments’ equations in a different method. Rather thamribution, each being separately evaluated using the moments

using the Taylor expansion, we take advantage of the fadgquations. The self-consistency analysis consists of compar-
that the functiong\ andB are polynomials, so that, under the jng the two methods.
Gaussian assumption, one can obtain the exact expressionsa priori, the first method, which evaluates directly the

of their moments in terms of the first and second order momoements appears more simple and efficient than the second
ments of the variablesAppendix A). We refer to this \yhich is using the same evaluation from the moments equa-
method as the G method to distinguish it from the RTyons and the calculation of an integral. However, the self-

me\s\r/]i(t)r?.the & method, we obtain a system of equations (oconsistency analysis provides a method to check how well
the dynamics of the moments of the FHN in which the thirdthe Gaussian assumption holds. Furthermore, the method is

and fifth equations differ from those in E¢@) as also the baS|s.for the sem|analyt|cgl computation of aut(_)- and
cross correlations of the state variables, as developed in Sec.
11 B. In the following, we first detail the second method.

A. Self-consistency analysis

d—sl—F .6 Sf 3 We denote byQ:(u,v) the probability density function
dt ' ° as, ) (pdf) of the joint distribution of &;,y;). Under the Gaussian
assumption, Q, is Gaussian N(ux(t),2(t)), where u
dCy, = (u1(t), (1)) is the mean, and
dt o o
1 12
s=( 77 ®
Given that, in the FHN model<0, and thatS;>0 (it is 012 02

a variancg the terms added to these equations oppose varia-
tions of S; and C,, because their partial derivatives with ] .
respect taS; [for the extra term in Eq(3)] and toCy, [for IS the covariance matrix.
the term in Eq.(4)] are negative. The addition of these dis- _The key observatlor_l for the second method for the evalu-
sipative terms has thus a stabilizing effect on the dynamic&tion of the moments is that
of S; andC,, and consequently on the whole system.
Figure 1 illustrates this point. The panels in this figure
represent the temporal evolutions of the moments computed A1(t+7)=E[X(t+7)]
with either methodthick dashed lines for RT and thick solid

+ o0 + o0
lines for G, together with estimates obtained from 1000 =f f E[x(t+ 7)[x(t)=u,y(t)=v]
simulations(thin solid lines. The three sets of lines remain —ow J e
close to one another during roughly the first 100 ms. This is X Qy(u,v)dudy

in agreement with the statement that the RT provides an

excellent approximation of the transient evolution of the mo- +oo o

ments. It also shows that the G behaves in a similar way. :f_m J'_m my[ 7|x=u,y=v]Q(u,v)dudv,

Nonetheless, the asymptotic dynamics of the two methods

differ considerably. While the moments from the G method (6)

stabilize at steady states, either in good agreement with esti-

mates from simulation@op two panels and bottom paner

with some degree of underestimatiomiddle two panels ~ wheremy(7|x=u,y=uv) represents the value at timeof the

those from the RT method blow, or display growing oscilla- solution of the moments equations with initial conditions:

tions. m;(0)=u, my(0)=v, S;(0)=S,(0)=C,(0)=0. In other
The above example illustrates that the modificationwords, with the second method one derives the moments as a

brought to the RT method renders it suitable for our purposeyweighted average of individual solutions of the moments

that is, the analysis of the noise induced changes in the st&quations. The self-consistency analysis consists in compar-

tionary distributions of the variables. In this respect, the facing u,(t+7) from Eg. (6) with m;(t+ 7) the value of the

that the G method underestimates quantitatively the secorgblution of the moments equations satisfying;,(t)

order moments is not of importance, because our interest is w1(t), my(t)=pu,(t), S;(t)=0a1(t), Sy(t)=0,(1),

not in estimating the discharge rate of the model aglLEj, Co(t) =0 1(t) (i.e., going throughQ; at timet).

but instead to characterize qualitative rather than quantitative A similar analysis can be applied to all variables so that

changes in the steady state regime. we obtain the following self-consistency conditions:

031911-3



SEIJI TANABE AND K. PAKDAMAN PHYSICAL REVIEW E 63 031911
+ +
mq(t+7)=uq(t+ T)=J f my[ 7|x=u,y=v]Q;(u,v)dudv,
+ oo + o
mMy(t+ 7) = u,(t+ T)ZJ j m,[ 7|x=u,y=v]Q;(u,v)dudv,

+ oo —+ oo
st+n=oyt+n= [ [ sy ol mirxeuy=o) Qw0 duds— it 7,

+ oo —+ oo
Sz(t+7'):<Tz(t+7'):J f (Sl rix=u,y=v]+m3[ rlx=u,y=v])Qu(u,v)dudo — pj(t+ 1),

Cut m=opttrn= [ [ (Calrlimuy=vl+mlrx=uy=vlml dx-uy=v))

X Qu(u,v)dudy — pq(t+ 7) po(t+ 7). (7)

Using the marginal and the conditional distributionsxpf ~ distributions[Eq. (9)] were given because they open the way
andy;, instead of the joint distributio®;, it is possible to  for the evaluation of the correlations using only the moments
derive another set of self-consistency conditions. We denotequations. This is described in the next section.
by gi(u) = fQ(u,v)dv andq}(v) = f Q,(u,v)du the pdfs of
X; andy, . These are Gaussiahg w1,07) andN(u,,05) (in B. Auto- and cross correlations
our notation, ther; are variances The conditional distribu-

. . X ) o
tions, with pdfsqt(vlu) and qty(_v|u) (i.e., the probability evaluate the entries of the correlation matrix of the stochastic
thaty=v, given thatx=u and vice versp are also Gauss- . .oqs ¢ v/ using only the moments equations. In other
ians N(uo+ (U= p1) 012/ 01,02—015/00) and N(us+ (v yords we use the estimates of the first and second order
~12) 015/ 05, 017 015l 0p). Using these, we can rewrite o ments at a given time together with their dynamics in
Eq.(6) as order to estimate the auto- and cross correlations of the vari-
vi(t+ 1) =E[X(t+7)] ablesx andy. These quantities are of prime importance in the
characterization of stochastic processes, as, for instance, they

In the following, we take advantage of E@®) in order to

4o . . X '
_ X entirely determine the properties of Gaussian processes and
B f_w ELx(t+ 7)[x(t) =ula(u)du consequently the responses of linear systems, or weakly per-
turbed systems operating near the linear regimes, to noise.
Hee Denoting byR,,(7) and R,,(7) the autocorrelation ok
= —ulg® XX Xy
f_x my[ 7jx=ulai(u)du, ®) and its cross correlation with, at lag 7, we have

where the change in notations is to distinguish the value Rux(7)=E[X(t)X(t+ 7)]— E[X(t) JE[x(t+ 7)]
obtained from Eq(8) from the one obtained from Ed6),

andm,[ 7|x=u] is the value at timer of the solution of the :J
moments equations with initial conditionsn,(0)=u,

My(0)= wo(t) + (U= p1(t))o1x(t)/ oa(t), S1(0)=0, S,(0) "
=0,(t) — o (t)/oi(t), and C,,(0)=0 [i.e., going initially :J ml[r|x=u]uqf(u)du—m’1*2,
throughg;(v|u)]. In this way, the first two self-consistency o0

conditions, derived from the marginal and conditional distri-

butions, can be given by R(7) =E[x(t)y(t+ 7)]—E[x(t) JE[y(t+ 7)]

) E[x(t+ 7)|[x(t)=u]ugi(u)du—m3?2

+ oo

) my[ 7[x=u]q(u)du, =Jlm2[r|x=u]uth(u)du. (10)

my(t+7)=v(t+7)= J
Similar expressions can be written fRy, andR,,, the au-
tocorrelation ofy and its cross correlation witk

Figure 2 shows the results of numerical resolutions of Eq.
Similar equations can be derived for the other conditions. (10) (thick solid lineg together with the same quantities es-

In fact, there are other possibilities for the derivation oftimated from simulations of the stochastic FHifin dashed
self-consistency equations, with E) being the basic one. lines). Overall, despite a quantitative underestimation at
The two equations derived from the marginal and conditionakhort time lags, the moments equations reproduce the main

+o0
mo(t+ )=yt )= [ mlely=vlaie)du. ©)
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0.1 - " " g " FIG. 2. Auto- and cross correlations of the
0 e FHN model as a function of time lag. Abscissas in
| all panels are time in milliseconds. Ordinates are
in abritrary units and represeRy,, (top left panel,
Ryy (top right pane), R, (bottom left panel and
Ryy (bottom right pang| respectively. Thick solid
and thin dotted curves in each panel are the corre-
-1 0.4 L lations computed from conditional moments and
0 5 10 15 20 25 30 0 5 10 15 20 25 30 simulations, respectively. Model parameters used
time lag time lag in this and the subsequent figures ae —1,
0.2 0.3 b=0, c=3, e=-0.333333, f=—-0.266 666,
g=0.233 333, and h=3. Noise level is
i 0=0.05 and constant currentlis=0. For the con-
ditional moments, 166 initial points were taken
within ~ [m}—5S} ,m; +5Sf] and [m}
S— —5S5 ,mj +5S5]. The simulation started at rest-
ing state. After free running for 500 ms, correla-
0.2 -0.1 tions were averaged over a duration of 10 000 ms.
0 5 10, 1520 25 30 o 5 10, 120 25 30 The simulation was run using the standard Euler
time lag time lag method with the same time step as in Fig. 1.

Now

-0.1
-0.2

03}/

x-x autocorrelation
x-y cross correlation

0.2

-0.1

y-x cross correlation
\
s
!

y-y autocorrelation

gualitative aspects of the correlations, such as the rapid stared in a Gaussian form around the resting stk pane).
bilization of these quantities to zero, following a pronouncedAs we increase the noise, a small proportion of units appear
initial increase and decrease Ry, and R, (a less marked at the lower end of the Gaussian and at high values near the
initial decrease is also presentRy,). These results support maximum of a dischargémiddle panel. At high noise, this

our point that the revised moments equations are suitable fgsroportion becomes significafiight panel, thus the distri-

the analysis of the qualitative aspects of stationary distribubution is no longer Gaussian-like, and in fact presents a sec-
tions of the variables. This is done in the following. ond mode.

The continuous effect of noise on the shape of the distri-
bution is shown in the second row panel. The thick solid line
represents the top and bottom limits and the thin dashed line

A bifurcation in a deterministic system is a qualitative represents the average value at each corresponding noise in-
change in the asymptotic dynamics, and it usually occurgensity. In this sense, this representation is reminiscent of the
when a parameter is moved across a critical value. Figure deterministic bifurcation diagraiffig. 4) which also showed
represents the well-known bifurcation diagram of the deterupper and lower values of during oscillations. Up to an
ministic FHN for the control parametér(constant stimula- intermediate noise levéabouto=0.2), the distribution wid-
tion intensity. The system stabilizes at an equilibrium point ens linearly as the noise is increased, while the center re-
at low and large current intensities, and displays periodianains near the resting state. This property is reminiscent of a
oscillations in the intermediate range of currents. These odinear system. As noise is further increased, within a rela-
cillations arise through Hopf bifurcatior(for a recent com- tively narrow range of noiséabout 0.2 ¢<0.3), the distri-
prehensive study of the bifurcations of the FHN please refebution widens markedly as depicted by the thick lines sud-
to [15)). denly curving towards lower and higher values. Despite the

Qualitative changes in the behavior of stochastic systemasymmetric change in the boundaries, the average stays near
due to a parameter modification can also be classified ithe resting state, which is in agreement with the observation
terms of bifurcations. In this respect, phenomenological storeported in the previous paragraph that, from this region, the
chastic bifurcations refer to qualitative changes in the stadistribution is non-Gaussian. At the high noise regime, the
tionary distribution of the variables. Typical examples areboundaries become almost parallel to the horizontal axis.
when the number of modes of the distributions change, ofhis is due to the fact that changes in the noise intensity at
that a single peak distribution becomes crater-[ik8]. In  this regime do not affect the qualitative shape of the distri-
contrast with deterministic bifurcations, phenomenologicalbution.
stochastic bifurcations may occur in a bifurcation interval The changes in the distributions of the variabléepicted
rather than at a critical parameter value. In other words, thebove are also present in the joint distribution of the two
transition between two qualitatively different stationary dis-variablesx andy which are presented at various noise levels
tributions proceeds progressively when the bifurcation paand constant currerihine bottom panels in Fig.)3Without
rameter is varied within the bifurcation interval. constant current input, the distribution at low noise is close

We show that the noisy FHN undergoes a transition reto a Gaussian centered at the stable equilibrilaft column,
sembling such a bifurcation as either the noise intensity otop panel. As the noise is increased, a small proportion ap-
the current amplitude is varied. Histograms illustrating thepears along the discharge orltiop row, middle panel At a
stationary distribution ok at three noise levels are shown in high noise level, the proportion along the orbit is signifi-
the top three panels of Fig. 3. At low noise, units are distrib-cantly visible, and the distribution no longer resembles that

IV. STOCHASTIC BIFURCATION
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FIG. 3. The effect of noise on the stationary distribution of FHN models. The top three panels are the histograms of thgheakign
of x is inverted so that discharging units appear at high positive valliee noise intensitystandard deviation of white Gaussian noise
increased as=0.133 333(left pane), 0.266 666 middle panel, and 0.333 338right pane). 100 000 units were sampled from simulations
which all started ak=y=1 and run for 100 ms. The bin size of the histograms is 0.05. The abscissas of these panels are in arbitrary units
(a.u), the ordinates are counts divided by bin widith a.u). In the second row panel, top and bottom boundatigsk solid lineg and the
averaggthin dashed lingof x is plotted as function of noise intensity. 10 000 units were simulated. Boundaries are determined such that one
percent are beyond the top and another one percent are beyond the bottom boundaries. The abscissas and the ordinate are in arbitrary unit:
The bottom nine three-dimensional plots are the histograms of the joint distribution plotted)oy thtease plane. Constant current intensity
is increased from top to bottom &s-0 (top row), 0.5(second row, and 1(bottom row. Noise intensity is increased from left to right, i.e.,
o=0.133 333(top row, left panel, 0.333 333(top row, middle pang] 0.4 (top row, right panel 0.133 333(second row, top pangl0.2
(second row, middle panel0.266 666(second row, right pangl0.033 333(bottom row, left pang| 0.066 666(bottom row, middle pangl
and 0.166 666bottom row, right panel The number of simulated units axe= 100 000(top row) andN =20 000(second and bottom rows
Bin size of thex axis is 0.1 and thg axis is 0.06. The two horizontal axes of these panels are in arbitrary units, while the vertical axis are
in counts per bin surfac@.u). Model parameters and simulation time step is the same as in Fig. 2.
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maxima along the discharge trajectory.

The moments equations approximate well the moments of
the variables distributions prior to the bifurcation, in the
Gaussian regime. For noise intensities or constant currents
beyond the bifurcation range, the moments equations can
only provide a satisfactory estimate during a transient time,
and not for the long term values of the moments, because the
corresponding stationary distributions are no longer
Gaussian-like. This phenomenon in fact results in a change
of the asymptotic behavior of the moments equations, which
can be analyzed in terms of deterministic bifurcations.

This point is illustrated in Fig. 4bottom paneél which

S shows the two-parameter bifurcation diagram of the mo-
0.7 — ments equations for the control parameters noise and current
0.6] ; intensities. The line crossing the diagram and connecting the
05! ] y axis to thex axis represents the location at which the mo-
0.4 ~—~ ments equations undergo a Hopf bifurcation. For noise and

- - ] current intensities enclosed within this line and the two axes,
03¢ T 1 the moments equations stabilize at a stable equilibrium point,
0.2} S ] reflecting the fact that the stationary distributions are Gauss-
01l \\ | ia_m. Beyond this bifurcation point, they display periodic os-

\ cillations over a narrow range. Further away, they undergo

other bifurcationgnot shown whose nature is not of impor-
tance, because the first Hopf bifurcation indicates that be-
yond this limit, the Gaussian approximation breaks down in
FIG. 4. Connection of deterministic and stochastic bifurcation inthe stationary regime. Therefore the phenomenological sto-
FHN model. Bifurcation of the approximation in E@) as constant  chastic bifurcation characterizing the transition from Gauss-
current input is changed when the noise intensity is Zeqper  jan to non-Gaussian stationary distributions appears as a
pane). Abscissa is current and ordinatenig. Both are in arbitrary Hopf bifurcation of the moments equations.
units. The thick solid lines represent the stable solutions and the The Hopf bifurcation line confirms the observations based
thin line represents the unstable solution. The closed circles reprgipnon numerical simulations that the noise range at which the
sent the extrema of stable periodic solutions and open circles repsiochastic bifurcation occurs decreases with increasing cur-
resent those of unstable periodic solutions. The curve in the bottorp, intensity. In fact, the intersection point between the
panel indicates the phase boundary in lthe two parameter plane. Hopf line and they axis in Fig. 4 corresponds exactly to the
The intersection of the curve with the abscissa corresponds to thﬁopf bifurcation point of the deterministic FHN, suggesting

first Hopf bifurcation point in the upper panel. The abscissa is CUhat the stochastic bifurcations are in fact an extension of this
rent and the ordinate is noise intensity, and both are in arbitrar)ae,[erministic bifurcation in the noisy system

5 -49-48-47 -46-45-44-43-42
I

units.

of a Gaussiar{top row, right pane).l V\/hen an intermediatg V. DISCUSSION

constant currentt is injected, the distribution along the orbit

appears at lower noise intensisecond row, left and middle In a previous work, we reported the change of behavior in

panel$. This is due to the fact that the stable equilibrium is stochastic HH equation®] that strongly resembled a phe-
shifted closer to threshold, so that discharge is induced bpomenological stochastic bifurcation, and which accounted
smaller perturbations. When the injected constant currerfor the noise enhanced discharge time precision in neuronal
is close to threshold, the distribution along the orbit is visibleensembles. The purpose of the present work was twofold:

at even very small noiséottom row, left pangl At this  develop a systematic method for the analysis of such noise
current intensity the distribution along the orbit is clearly induced changes, ar(d) apply it to a prototype of an excit-
visible at larger noise intensitiegbottom row, middle and able system, namely the FHN, to show that the phenomenon
right panels. observed in the HH model can be expected to occur in other

In summary, our numerical investigations establish thaexcitable systems.

the noisy FHN model undergoes a transition resembling a The main step in this process was to obtain a deterministic
phenomenological stochastic bifurcation as either the noiseystem whose bifurcations would reflect the phenomenologi-
intensity or the constant current level are increased. Thisal stochastic bifurcation of the noisy system. While this
bifurcation is characterized by a radical change of shape afonstitutes a standard approach for the analysis and classifi-
the stationary distribution of the variables occurring over acation of the behavior of noisy systems, our method differs
short range of parameters. Prior to this bifurcation, the disfrom previous studies. Indeed, mainly this problem has been
tributions take on a Gaussian form. Following it, the indi- tackled in systems composed of interacting units. For these,
vidual distributions of the variables become bimodal, andt is possible to obtain a deterministic description of the mac-
their joint distribution presents a circle like locus of local roscopic behavior of the system in the limit where the system
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has infinitely many interacting components6]. However, %
this method is not appropriate for the analysis of the phe- E[G(X,t)]=J f : f G(u,t)p(u,t)du
nomenological stochastic bifurcations at the single unit level,

such as the ones studied in the present work. For this reason,

we proceeded along a different approach which consisted of -

_ ; -h CC G(mb)+ o 2 2
using the moments equations for the determination of sto- =1 k=1 ﬁu|¢9u
chastic bifurcations. (A2)

In this respect, the first part of our work was methodologi-
cal and consisted of the modification of the moments equawhereC = E[(x,—m;)(x,—my)] are the second order mo-
tions obtained using the RT method to render them suitablgents. This approximate expression for the expectation lies
for our purpose. In the process, we also deri@da general ~ at the heart of the RT methdd 1] because it allows a sys-
method for the evaluation of such equations for general HHematic derivation of the equations for the dynamics of the
type models(Appendix B, (i) self-consistency conditions first and second order moments as a function of only these
for the moments equations, ariii) general expression of same variables.
the auto- and cross correlations using the moments equa- G method. When the functio® in Eq. (A1) is a polyno-

tions. These results are general and hold beyond the examphial, its expectation can be expressed exactly in terms of the
of the FHN model considered. first and second order moments using the fact that all higher

The second part of our work presented numerical eviinoments of a Gaussian distribution can be written in terms
dence for stochastic bifurcation in the FHN, which confirmedof these, as
the generality of the observations made in the HH mogEl
It further argued that this change of behavior was reflected in

(A1)

(m,1)-Cy,

Elx%---x1= > I Cy ifjiseven

a deterministic Hopf bifurcation in the corresponding mo- all pairing (I,k)
ments equations. While our previous work was concerned o
only with the influence of noise, the present one reported the =0 if j is odd, (A3)

analysis of the joint effect of noise level together with con-
stant current intensity. This in turn revealed that a similarVNére we takg/2(j>2) pairs of (,k) for the product and

phenomenological stochastic bifurcation takes place when &l (1 ~1)(1=3)---3-1 combinations of pairs for the sum-
fixed noise level the intensity of the constant current stimy/Nation. In this way, one avoids using Taylor expansions, and
lation is increased. This hint to the similarity between the92ins higher approximation accuracy.
stochastic bifurcation and the Hopf bifurcation separating ex-
citable and oscillating regimes in the FHN was confirmed in APPENDIX B: MOMENTS OF THE GENERAL
the bifurcation diagram of the moments equations. HODGKIN-HUXLEY-TYPE MODEL

In conclusion, the present study improved on the RT ap-
proximation for the derivation of the moments equations of
stochastic systems and developed an application for it
namely in the analysis of stochastic bifurcations. The exy
ample presented here was that of the FHN model and wa f
motivated by the fact that stochastic bifurcations in excitable
systems such as neurons can play a functional role in signal dv
processing. Nevertheless, the methodology developed is gen- —= 2 gimPhi(V; = V) +1+ &(1), (B1)
eral and can be applied to the analysis of noise related dt 5
changes in other classes of systems.

In [13], Rodriguez and Tuckwell derive the moments
equations for the standard HH equatid@g] using the sec-
ond order Taylor expansion mentioned previously. In this
appendix, we consider the case of general HH type equations
the form:

dx
i~ V= V)X, (B2)
ACKNOWLEDGMENT
where the variable¥, m;, andh; are the membrane poten-
tial, and the activation and inactivation of thé ion current.
V; is the reversal potentials amgl=G;/C,, is the corre-
sponding maximal conductanc&s normalized by the mem-
brane capacitancg,,. p andq are integers that depend on
(g=0 if there is no inactivation £(t) represents white
Gaussian noise satisfyinde(¢(t))=0 and E(&(t)&(s))
Rodriguez and Tuckwell’s approximation. We first re- =o28(t—s). x in Eq. (B2) represents gating variables de-
mind Rodriguez and Tuckwell’§11] approximation of the noted asm; andh; in Eq. (B1). a,(V) and y,(V) are auxil-
moments. Let us consider andimensional random process iary functions ofV that determine the dynamics of gating
x(t) = (x1(t), Xo(1), ... xn(t)) with a (close t0 Gaussian Vvariables.
pdf p(u,t)=p(uy,u,, ...,u,,t). Then, using a second or- We denote the first and second order mome_nts_associated
der Taylor expansion gb around its meam(t), the expec-  with the state variables of EqéB1) and (B2) asV, x, Sy,
tation of an arbitrary functiols(x,t) can be expressed as S, Cy,, andC,,. The moments equations are given by

S.T. would like to thank T. Shimokawa for helpful dis-
cussions.

APPENDIX A: APPROXIMATIONS IN A GENERAL
SYSTEM
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VS gELmRY, -V ,

(L—s{“=22. GEL(V=V)mPhi(Vi=V)]+0?,
dCyy _

G —F (x— x)z gimPh9(V;— V)

+E[(V=V)(ax(V) = 7,(V)-X)],

dx
a =E[ay (V)= y(V)X],

ds, _
Gt =20 (V) = 3 (V)- )],

dc,, —
gt~ ELO)(@y(V) = (V) -y)]

+E[(Y—Y) (@x(V) = 7(V) - X)].

PHYSICAL REVIEW B3 031911

tions of polynomials and are therefore entirely determined
(B3) using the G method and EGA3). The remaining terms can

be treated using the Taylor expansion, up to an arbitrary

order, and can be expressed as one of the three general ex-
(B4) pansions provided below:

Elg0a)]= 2 kk| ——gI(xyRY,, (BY)
B5
(®9 E[g(x1)x2]= Rlzz kk' ——g@ D(x)RY;, (B10)
(B6)
1
E[9(x1) X2X3]—k2 2_ (R11R23+ 2kRy5R13)
(B7)
X gI(x)RE T, (B11)

where{x;} form a Gaussian vector with covariance matrix
[Ri;], gis some arbitrary function, argf® is its kth deriva-

(B8) tive.
In this way, combining the G method and the Taylor ex-

The right-hand sides of the first two equations as well as thg@ansion, one can derive the moments equations, (B#-
first term in the right-hand side of the third one are expecta{B8), for any HH type equation up to an arbitrary order.
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