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Dynamics of moments of FitzHugh-Nagumo neuronal models and stochastic bifurcations
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For the study of the behavior of noisy neuronal models, Rodriguez and Tuckwell have introduced an elegant
and systematic method which consists of replacing the system of stochastic differential equations with a system
of deterministic equations representing the dynamics of the means, variances, and covariance of the state
variables@R. Rodriguez and H.C. Tuckwell, Phys. Rev. E54, 5585 ~1996!#. In this work, we first report a
modification of their method in the case of the FitzHugh-Nagumo model which enhances the accuracy of the
approximation without including higher order moments. This method is then combined with a self-consistency
argument in order to better characterize the behavior of the underlying stochastic processes through the
computation of approximate auto- and cross-correlation functions of the state variables. Finally, we argue that
the moments’ equations can also reveal the existence of stochastic bifurcations, i.e., qualitative changes in the
dynamics of stochastic systems.
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I. INTRODUCTION

Noise can significantly alter the response of neurons
it has been postulated that this effect may play a functio
role in signal processing in nervous systems@1#. This has in
turn motivated theoretical investigations aiming to determ
the mechanisms underlying the influence of noise, usin
wide variety of models and approaches@2,3#, such as, for
instance, first passage time analysis of integrate-and
models@4,5# and other reduced stochastic models@6#, and
mean firing rate approximations of FitzHugh-Nagum
~FHN! and Hodgkin-Huxley~HH! models@7,8#.

In a previous study@9#, we reported a different class o
noise induced phenomena by examining the influence
noise directly on the membrane potential of the HH mod
rather than on its discharge rate. More precisely, we
served that, at low noise levels, the stationary membr
potential distribution takes on a Gaussian form cluste
around the resting state, while at high noise intensities
takes on a bimodal form stretching out well beyond the fir
threshold, with the transition between the two regimes tak
place in a relatively narrow range of noise. Furthermore,
argued that such a noise induced change in the memb
potential distribution could be of functional significance b
cause it was responsible for the noise enhanced disch
timing precision reported by Peiet al. @7#.

However, despite evidence of its significance, to o
knowledge the main analysis of such noise induced tra
tions remains based on numerical investigation. The purp
of this paper is to develop a semianalytical method to cap
such noise induced changes and illustrate it by showing
the FHN model also undergoes a noise induced transi
similar to the HH model.

The main guiding point in our analysis is that the no
induced transition in@9# is strongly reminiscent of phenom
enological stochastic bifurcations@10#, that is when, in a
1063-651X/2001/63~3!/031911~9!/$15.00 63 0319
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stochastic system, the change in a parameter value leads
qualitative change in the stationary solution of the cor
sponding Fokker-Planck equation. However, the analysis
such bifurcations remains arduous as there are no gen
algebraic characterizations of such changes as there exis
instance, for describing local bifurcations of determinis
systems. Nonetheless, this suggests that it may be possib
capture phenomenological stochastic bifurcations as de
ministic bifurcations in an appropriately defined determin
tic approximation. The purpose of the present work is
define such an approximation and apply it to the study of
stochastic bifurcation of the FHN model as the noise int
sity is increased.

Our starting point is Rodriguez and Tuckwell’s~RT’s!
efficient and systematic method to compute the dynamic
the moments of the model variables@11–13#. More pre-
cisely, their approach was to assume that when the fluc
tion is small, the distribution of the state variables of a s
tem takes on a Gaussian shape. Under this assump
statistical estimates sampled from simulations of a large
work of coupled stochastic differential equations are
placed with a system of purely deterministic different
equations for the first and second order moments. They h
formulated the moments’ equations successively for a g
eral system@11#, the FHN model@12#, and the HH model
@13#. In all models, their approximation proved to be in e
cellent agreement with transient behavior of simulations
the stochastic system at low noise amplitude. However
they have pointed out, their approximation may break do
after some time duration. For this reason, their method is
optimally suited for analyzing the asymptotic behavior
noisy neuron models. We therefore start by modifying th
method to adapt it to the analysis of stationary distribution
state variables in excitable noisy neuron models. Then,
show that deterministic bifurcations in these revised m
ments equations can be used to characterize the phenom
©2001 The American Physical Society11-1
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logical stochastic bifurcation in the noisy FHN.
This paper is organized as follows. First, we compare

modified moments equation of the FHN model with RT
original equations in Sec. II. Second, in Sec. III, we exam
the self-consistency of moments equations, and using it,
compute auto- and cross correlations of the model variab
Third, we investigate the correspondence between the d
ministic bifurcations of moments equations and the pheno
enological stochastic bifurcation of the FHN in Sec. IV. F
nally, we discuss the results in Sec. V. Furthermo
Appendix A is devoted to technical aspects pertaining to
moments equations.

II. MOMENTS OF THE FITZHUGH-NAGUMO MODEL

The standard FHN model receiving white Gaussian no
is described by the following stochastic differential equatio

dx

dt
5A~x,y!1I 1j~ t !,

dy

dt
5B~x,y!, ~1!

where functionsA(x,y)5ax31bx21cx1hy and B(x,y)
5ex1 f y1g and the noise termj(t) satisfies bothE@j(t)#
50 andE@j(t)j(s)#5s2d(t2s).

As a starting point, we remind Rodriguez and Tuckwel
~RT! method as applied to the noisy FHN model@14#. These
authors first assume that the distributions of the variab
take on approximately Gaussian forms so that they can
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entirely characterized by their first and second order m
ments~i.e., the means, the variances, and the covarianc!.
Then using a second order Taylor expansion of the exp
sions of the moments ofx andy, and taking advantage of th
fact that odd ordered moments are zero, they derive the e
tions for the moments as

dm1

dt
5F1~m1 ,m2 ,S1!5A~m1 ,m2!1

1

2
Axx~m1 ,m2!S11I ,

dm2

dt
5F2~m1 ,m2!5B~m1 ,m2!,

dS1

dt
5F3~m1 ,S1 ,C12!

52@Ax~m1 ,m2!S11Ay~m1 ,m2!C12#1s2,

dS2

dt
5F4~m2 ,S2 ,C12!52@Bx~m1 ,m2!C121By~m1 ,m2!S2#,

dC12

dt
5F5~m1 ,S1 ,S2 ,C12!

5Bx~m1 ,m2!S11Ay~m1 ,m2!S2

1@Ax~m1 ,m2!1By~m1 ,m2!#C12, ~2!
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FIG. 1. Dynamics of moments derived und
the RT and G method in an excitable FHN mode
Time evolution ofm1 is shown in the top left
panel. Each curve is the solution of the G meth
~thick solid lines!, RT method ~thick broken
lines!, and an estimate from simulations of 100
units ~thin solid lines!. m2 ~top right panel!, S1

~middle left panel!, S2 ~middle right panel!, and
C1,2 ~bottom panel! are plotted in respective pan
els. All abscissas are time in milliseconds an
ordinates are in arbitrary units. Noise intensi
s50.05 and constant currentI 50. Model pa-
rameters were chosen to be identical with@12#,
that is, a520.5, b50.55, c520.05, e
50.015, f 520.003, g50, andh521. Initial
conditions were chosenm1(0)5m2(0)51, and
S1(0)5S2(0)5C12(0)50. The computations
were carried out using the fourth order Rung
Kutta method with a time step of 0.1 for the ap
proximations and the standard Euler method w
a time step of 0.01 for the simulations. Simila
results were obtained with smaller time steps.
1-2
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DYNAMICS OF MOMENTS OF FITZHUGH-NAGUMO . . . PHYSICAL REVIEW E63 031911
where meansm15E@x# and m25E@y# are the first order
moments, and variancesS15E@(x2m1)2# and S25E@(y
2m2)2# and covarianceC125E@(x2m1)(y2m2)# are the
second order moments. The functionsAx , Ay , Axx , and so
on, are the first and second partial derivatives with respec
x andy.

In our analysis, we follow RT’s assumption that the d
tributions are approximately Gaussian, however, we evalu
the moments’ equations in a different method. Rather t
using the Taylor expansion, we take advantage of the
that the functionsA andB are polynomials, so that, under th
Gaussian assumption, one can obtain the exact expres
of their moments in terms of the first and second order m
ments of the variables~Appendix A!. We refer to this
method as the G method to distinguish it from the R
method.

With the G method, we obtain a system of equations
the dynamics of the moments of the FHN in which the th
and fifth equations differ from those in Eq.~2! as

dS1

dt
5F316aS1

2 , ~3!

dC12

dt
5F513aS1C12. ~4!

Given that, in the FHN modela,0, and thatS1.0 ~it is
a variance!, the terms added to these equations oppose va
tions of S1 and C12 because their partial derivatives wit
respect toS1 @for the extra term in Eq.~3!# and toC12 @for
the term in Eq.~4!# are negative. The addition of these di
sipative terms has thus a stabilizing effect on the dynam
of S1 andC12 and consequently on the whole system.

Figure 1 illustrates this point. The panels in this figu
represent the temporal evolutions of the moments comp
with either method~thick dashed lines for RT and thick soli
lines for G!, together with estimates obtained from 10
simulations~thin solid lines!. The three sets of lines remai
close to one another during roughly the first 100 ms. Thi
in agreement with the statement that the RT provides
excellent approximation of the transient evolution of the m
ments. It also shows that the G behaves in a similar w
Nonetheless, the asymptotic dynamics of the two meth
differ considerably. While the moments from the G meth
stabilize at steady states, either in good agreement with
mates from simulations~top two panels and bottom panel! or
with some degree of underestimation~middle two panels!,
those from the RT method blow, or display growing oscil
tions.

The above example illustrates that the modificat
brought to the RT method renders it suitable for our purpo
that is, the analysis of the noise induced changes in the
tionary distributions of the variables. In this respect, the f
that the G method underestimates quantitatively the sec
order moments is not of importance, because our intere
not in estimating the discharge rate of the model as in@12#,
but instead to characterize qualitative rather than quantita
changes in the steady state regime.
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III. SELF-CONSISTENCY AND THE CORRELATION
MATRIX

A. Self-consistency analysis

There are two methods for computing the first and sec
order moments of the state variables of Eq.~1!: either di-
rectly from the differential equations for the moments, or
adding up the contribution of the different points in the d
tribution, each being separately evaluated using the mom
equations. The self-consistency analysis consists of com
ing the two methods.

A priori, the first method, which evaluates directly th
moments appears more simple and efficient than the sec
which is using the same evaluation from the moments eq
tions and the calculation of an integral. However, the se
consistency analysis provides a method to check how w
the Gaussian assumption holds. Furthermore, the metho
also the basis for the semianalytical computation of auto-
cross correlations of the state variables, as developed in
III B. In the following, we first detail the second method.

We denote byQt(u,v) the probability density function
~pdf! of the joint distribution of (xt ,yt). Under the Gaussian
assumption, Qt is Gaussian N„m(t),S(t)…, where m
5„m1(t),m2(t)… is the mean, and

S5S s1 s12

s12 s2
D ~5!

is the covariance matrix.
The key observation for the second method for the eva

ation of the moments is that

m1~ t1t!5E@x~ t1t!#

5E
2`

1`E
2`

1`

E@x~ t1t!ux~ t !5u,y~ t !5v#

3Qt~u,v !dudv

5E
2`

1`E
2`

1`

m1@tux5u,y5v#Qt~u,v !dudv,

~6!

wherem1(tux5u,y5v) represents the value at timet of the
solution of the moments equations with initial condition
m1(0)5u, m2(0)5v, S1(0)5S2(0)5C12(0)50. In other
words, with the second method one derives the moments
weighted average of individual solutions of the mome
equations. The self-consistency analysis consists in com
ing m1(t1t) from Eq. ~6! with m1(t1t) the value of the
solution of the moments equations satisfyingm1(t)
5m1(t), m2(t)5m2(t), S1(t)5s1(t), S2(t)5s2(t),
C12(t)5s12(t) ~i.e., going throughQt at time t).

A similar analysis can be applied to all variables so th
we obtain the following self-consistency conditions:
1-3
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m1~ t1t!5m1~ t1t!5E
2`

1`E
2`

1`

m1@tux5u,y5v#Qt~u,v !dudv,

m2~ t1t!5m2~ t1t!5E
2`

1`E
2`

1`

m2@tux5u,y5v#Qt~u,v !dudv,

S1~ t1t!5s1~ t1t!5E
2`

1`E
2`

1`

~S1@tux5u,y5v#1m1
2@tux5u,y5v# !Qt~u,v !dudv2m1

2~ t1t!,

S2~ t1t!5s2~ t1t!5E
2`

1`E
2`

1`

~S2@tux5u,y5v#1m2
2@tux5u,y5v# !Qt~u,v !dudv2m2

2~ t1t!,

C12~ t1t!5s12~ t1t!5E
2`

1`E
2`

1`

~C12@tux5u,y5v#1m1@tux5u,y5v#m2@tux5u,y5v# !

3Qt~u,v !dudv2m1~ t1t!m2~ t1t!. ~7!
o

-

e

lu

y
tri

.
o
.
na

ay
nts

stic
er
rder
in
ari-
he
they
and
per-
se.

q.
s-

at
ain
Using the marginal and the conditional distributions ofxt
and yt instead of the joint distributionQt , it is possible to
derive another set of self-consistency conditions. We den
by qt

x(u)5*Qt(u,v)dv andqt
y(v)5*Qt(u,v)du the pdfs of

xt andyt . These are GaussiansN(m1 ,s1) andN(m2 ,s2) ~in
our notation, thes i are variances!. The conditional distribu-
tions, with pdfsqt

x(vuu) and qt
y(vuu) ~i.e., the probability

that y5v, given thatx5u and vice versa!, are also Gauss
ians N„m21(u2m1)s12/s1 ,s22s12/s1… and N„m11(v
2m2)s12/s2 , s12s12/s2…. Using these, we can rewrit
Eq. ~6! as

n1~ t1t!5E@x~ t1t!#

5E
2`

1`

E@x~ t1t!ux~ t !5u#qt
x~u!du

5E
2`

1`

m1@tux5u#qt
x~u!du, ~8!

where the change in notations is to distinguish the va
obtained from Eq.~8! from the one obtained from Eq.~6!,
andm1@tux5u# is the value at timet of the solution of the
moments equations with initial conditionsm1(0)5u,
m2(0)5m2(t)1„u2m1(t)…s12(t)/s1(t), S1(0)50, S2(0)
5s2(t)2s12(t)/s1(t), and C12(0)50 @i.e., going initially
throughqt

x(vuu)]. In this way, the first two self-consistenc
conditions, derived from the marginal and conditional dis
butions, can be given by

m1~ t1t!5n1~ t1t!5E
2`

1`

m1@tux5u#qt
x~u!du,

m2~ t1t!5n2~ t1t!5E
2`

1`

m2@tuy5v#qt
y~v !du. ~9!

Similar equations can be derived for the other conditions
In fact, there are other possibilities for the derivation

self-consistency equations, with Eq.~7! being the basic one
The two equations derived from the marginal and conditio
03191
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distributions@Eq. ~9!# were given because they open the w
for the evaluation of the correlations using only the mome
equations. This is described in the next section.

B. Auto- and cross correlations

In the following, we take advantage of Eq.~9! in order to
evaluate the entries of the correlation matrix of the stocha
process (xt ,yt) using only the moments equations. In oth
words, we use the estimates of the first and second o
moments at a given time together with their dynamics
order to estimate the auto- and cross correlations of the v
ablesx andy. These quantities are of prime importance in t
characterization of stochastic processes, as, for instance,
entirely determine the properties of Gaussian processes
consequently the responses of linear systems, or weakly
turbed systems operating near the linear regimes, to noi

Denoting byRxx(t) and Rxy(t) the autocorrelation ofx
and its cross correlation withy, at lagt, we have

Rxx~t!5E@x~ t !x~ t1t!#2E@x~ t !#E[x(t1t)]

5E
2`

`

E@x~ t1t!ux~ t !5u#uqt
x~u!du2m1*

2

5E
2`

`

m1@tux5u#uqt
x~u!du2m1*

2,

Rxy~t!5E@x~ t !y~ t1t!#2E@x~ t !#E@y~ t1t!#

5E
2`

`

m2@tux5u#uqt
x~u!du. ~10!

Similar expressions can be written forRyy andRyx , the au-
tocorrelation ofy and its cross correlation withx.

Figure 2 shows the results of numerical resolutions of E
~10! ~thick solid lines! together with the same quantities e
timated from simulations of the stochastic FHN~thin dashed
lines!. Overall, despite a quantitative underestimation
short time lags, the moments equations reproduce the m
1-4
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FIG. 2. Auto- and cross correlations of th
FHN model as a function of time lag. Abscissas
all panels are time in milliseconds. Ordinates a
in abritrary units and representRxx ~top left panel!,
Rxy ~top right panel!, Ryx ~bottom left panel!, and
Ryy ~bottom right panel!, respectively. Thick solid
and thin dotted curves in each panel are the cor
lations computed from conditional moments an
simulations, respectively. Model parameters us
in this and the subsequent figures area521,
b50, c53, e520.333333, f 520.266 666,
q50.233 333, and h53. Noise level is
s50.05 and constant current isI 50. For the con-
ditional moments, 166 initial points were take
within @m1* 25S1* ,m1* 15S1* # and @m2*
25S2* ,m2* 15S2* #. The simulation started at rest
ing state. After free running for 500 ms, correla
tions were averaged over a duration of 10 000 m
The simulation was run using the standard Eu
method with the same time step as in Fig. 1.
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qualitative aspects of the correlations, such as the rapid
bilization of these quantities to zero, following a pronounc
initial increase and decrease inRyx and Rxy ~a less marked
initial decrease is also present inRxx). These results suppor
our point that the revised moments equations are suitable
the analysis of the qualitative aspects of stationary distri
tions of the variables. This is done in the following.

IV. STOCHASTIC BIFURCATION

A bifurcation in a deterministic system is a qualitativ
change in the asymptotic dynamics, and it usually occ
when a parameter is moved across a critical value. Figu
represents the well-known bifurcation diagram of the de
ministic FHN for the control parameterI ~constant stimula-
tion intensity!. The system stabilizes at an equilibrium poi
at low and large current intensities, and displays perio
oscillations in the intermediate range of currents. These
cillations arise through Hopf bifurcations~for a recent com-
prehensive study of the bifurcations of the FHN please re
to @15#!.

Qualitative changes in the behavior of stochastic syste
due to a parameter modification can also be classified
terms of bifurcations. In this respect, phenomenological s
chastic bifurcations refer to qualitative changes in the s
tionary distribution of the variables. Typical examples a
when the number of modes of the distributions change
that a single peak distribution becomes crater-like@10#. In
contrast with deterministic bifurcations, phenomenologi
stochastic bifurcations may occur in a bifurcation interv
rather than at a critical parameter value. In other words,
transition between two qualitatively different stationary d
tributions proceeds progressively when the bifurcation
rameter is varied within the bifurcation interval.

We show that the noisy FHN undergoes a transition
sembling such a bifurcation as either the noise intensity
the current amplitude is varied. Histograms illustrating t
stationary distribution ofx at three noise levels are shown
the top three panels of Fig. 3. At low noise, units are distr
03191
ta-
d

or
-

rs
4

r-

ic
s-

r

s
in
-
-

r

l
l
e

-
-

-
r

e

-

uted in a Gaussian form around the resting state~left panel!.
As we increase the noise, a small proportion of units app
at the lower end of the Gaussian and at high values near
maximum of a discharge~middle panel!. At high noise, this
proportion becomes significant~right panel!, thus the distri-
bution is no longer Gaussian-like, and in fact presents a s
ond mode.

The continuous effect of noise on the shape of the dis
bution is shown in the second row panel. The thick solid li
represents the top and bottom limits and the thin dashed
represents the average value at each corresponding nois
tensity. In this sense, this representation is reminiscent of
deterministic bifurcation diagram~Fig. 4! which also showed
upper and lower values ofx during oscillations. Up to an
intermediate noise level~abouts50.2), the distribution wid-
ens linearly as the noise is increased, while the center
mains near the resting state. This property is reminiscent
linear system. As noise is further increased, within a re
tively narrow range of noise~about 0.2,s,0.3), the distri-
bution widens markedly as depicted by the thick lines s
denly curving towards lower and higher values. Despite
asymmetric change in the boundaries, the average stays
the resting state, which is in agreement with the observa
reported in the previous paragraph that, from this region,
distribution is non-Gaussian. At the high noise regime,
boundaries become almost parallel to the horizontal a
This is due to the fact that changes in the noise intensity
this regime do not affect the qualitative shape of the dis
bution.

The changes in the distributions of the variablex depicted
above are also present in the joint distribution of the t
variablesx andy which are presented at various noise lev
and constant current~nine bottom panels in Fig. 3!. Without
constant current input, the distribution at low noise is clo
to a Gaussian centered at the stable equilibrium~left column,
top panel!. As the noise is increased, a small proportion a
pears along the discharge orbit~top row, middle panel!. At a
high noise level, the proportion along the orbit is signi
cantly visible, and the distribution no longer resembles t
1-5
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FIG. 3. The effect of noise on the stationary distribution of FHN models. The top three panels are the histograms of the valuex ~the sign
of x is inverted so that discharging units appear at high positive values!. The noise intensity~standard deviation of white Gaussian noise! is
increased ass50.133 333~left panel!, 0.266 666~middle panel!, and 0.333 333~right panel!. 100 000 units were sampled from simulation
which all started atx5y51 and run for 100 ms. The bin size of the histograms is 0.05. The abscissas of these panels are in arbitr
~a.u.!, the ordinates are counts divided by bin width~in a.u.!. In the second row panel, top and bottom boundaries~thick solid lines! and the
average~thin dashed line! of x is plotted as function of noise intensity. 10 000 units were simulated. Boundaries are determined such t
percent are beyond the top and another one percent are beyond the bottom boundaries. The abscissas and the ordinate are in ar
The bottom nine three-dimensional plots are the histograms of the joint distribution plotted on thex-y phase plane. Constant current intens
is increased from top to bottom asI 50 ~top row!, 0.5 ~second row!, and 1~bottom row!. Noise intensity is increased from left to right, i.e
s50.133 333~top row, left panel!, 0.333 333~top row, middle panel!, 0.4 ~top row, right panel!, 0.133 333~second row, top panel!, 0.2
~second row, middle panel!, 0.266 666~second row, right panel!, 0.033 333~bottom row, left panel!, 0.066 666~bottom row, middle panel!,
and 0.166 666~bottom row, right panel!. The number of simulated units areN5100 000~top row! andN520 000~second and bottom rows!.
Bin size of thex axis is 0.1 and they axis is 0.06. The two horizontal axes of these panels are in arbitrary units, while the vertical ax
in counts per bin surface~a.u.!. Model parameters and simulation time step is the same as in Fig. 2.
031911-6
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of a Gaussian~top row, right panel!. When an intermediate
constant currentI is injected, the distribution along the orb
appears at lower noise intensity~second row, left and middle
panels!. This is due to the fact that the stable equilibrium
shifted closer to threshold, so that discharge is induced
smaller perturbations. When the injected constant cur
is close to threshold, the distribution along the orbit is visib
at even very small noise~bottom row, left panel!. At this
current intensity the distribution along the orbit is clea
visible at larger noise intensities~bottom row, middle and
right panels!.

In summary, our numerical investigations establish t
the noisy FHN model undergoes a transition resemblin
phenomenological stochastic bifurcation as either the n
intensity or the constant current level are increased. T
bifurcation is characterized by a radical change of shape
the stationary distribution of the variables occurring ove
short range of parameters. Prior to this bifurcation, the d
tributions take on a Gaussian form. Following it, the ind
vidual distributions of the variables become bimodal, a
their joint distribution presents a circle like locus of loc

FIG. 4. Connection of deterministic and stochastic bifurcation
FHN model. Bifurcation of the approximation in Eq.~4! as constant
current input is changed when the noise intensity is zero~upper
panel!. Abscissa is current and ordinate ism1. Both are in arbitrary
units. The thick solid lines represent the stable solutions and
thin line represents the unstable solution. The closed circles re
sent the extrema of stable periodic solutions and open circles
resent those of unstable periodic solutions. The curve in the bo
panel indicates the phase boundary in theI -s two parameter plane
The intersection of the curve with the abscissa corresponds to
first Hopf bifurcation point in the upper panel. The abscissa is c
rent and the ordinate is noise intensity, and both are in arbit
units.
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maxima along the discharge trajectory.
The moments equations approximate well the moment

the variables distributions prior to the bifurcation, in th
Gaussian regime. For noise intensities or constant curr
beyond the bifurcation range, the moments equations
only provide a satisfactory estimate during a transient tim
and not for the long term values of the moments, because
corresponding stationary distributions are no long
Gaussian-like. This phenomenon in fact results in a cha
of the asymptotic behavior of the moments equations, wh
can be analyzed in terms of deterministic bifurcations.

This point is illustrated in Fig. 4~bottom panel! which
shows the two-parameter bifurcation diagram of the m
ments equations for the control parameters noise and cu
intensities. The line crossing the diagram and connecting
y axis to thex axis represents the location at which the m
ments equations undergo a Hopf bifurcation. For noise
current intensities enclosed within this line and the two ax
the moments equations stabilize at a stable equilibrium po
reflecting the fact that the stationary distributions are Gau
ian. Beyond this bifurcation point, they display periodic o
cillations over a narrow range. Further away, they unde
other bifurcations~not shown! whose nature is not of impor
tance, because the first Hopf bifurcation indicates that
yond this limit, the Gaussian approximation breaks down
the stationary regime. Therefore the phenomenological
chastic bifurcation characterizing the transition from Gau
ian to non-Gaussian stationary distributions appears a
Hopf bifurcation of the moments equations.

The Hopf bifurcation line confirms the observations bas
upon numerical simulations that the noise range at which
stochastic bifurcation occurs decreases with increasing
rent intensity. In fact, the intersection point between t
Hopf line and they axis in Fig. 4 corresponds exactly to th
Hopf bifurcation point of the deterministic FHN, suggestin
that the stochastic bifurcations are in fact an extension of
deterministic bifurcation in the noisy system.

V. DISCUSSION

In a previous work, we reported the change of behavio
stochastic HH equations@9# that strongly resembled a phe
nomenological stochastic bifurcation, and which accoun
for the noise enhanced discharge time precision in neuro
ensembles. The purpose of the present work was twofold~i!
develop a systematic method for the analysis of such n
induced changes, and~ii ! apply it to a prototype of an excit
able system, namely the FHN, to show that the phenome
observed in the HH model can be expected to occur in o
excitable systems.

The main step in this process was to obtain a determini
system whose bifurcations would reflect the phenomenolo
cal stochastic bifurcation of the noisy system. While th
constitutes a standard approach for the analysis and cla
cation of the behavior of noisy systems, our method diff
from previous studies. Indeed, mainly this problem has b
tackled in systems composed of interacting units. For the
it is possible to obtain a deterministic description of the m
roscopic behavior of the system in the limit where the syst
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m
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1-7
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has infinitely many interacting components@16#. However,
this method is not appropriate for the analysis of the p
nomenological stochastic bifurcations at the single unit lev
such as the ones studied in the present work. For this rea
we proceeded along a different approach which consiste
using the moments equations for the determination of
chastic bifurcations.

In this respect, the first part of our work was methodolo
cal and consisted of the modification of the moments eq
tions obtained using the RT method to render them suita
for our purpose. In the process, we also derived;~i! a general
method for the evaluation of such equations for general
type models~Appendix B!, ~ii ! self-consistency condition
for the moments equations, and~iii ! general expression o
the auto- and cross correlations using the moments e
tions. These results are general and hold beyond the exa
of the FHN model considered.

The second part of our work presented numerical e
dence for stochastic bifurcation in the FHN, which confirm
the generality of the observations made in the HH model@9#.
It further argued that this change of behavior was reflecte
a deterministic Hopf bifurcation in the corresponding m
ments equations. While our previous work was concer
only with the influence of noise, the present one reported
analysis of the joint effect of noise level together with co
stant current intensity. This in turn revealed that a sim
phenomenological stochastic bifurcation takes place whe
fixed noise level the intensity of the constant current stim
lation is increased. This hint to the similarity between t
stochastic bifurcation and the Hopf bifurcation separating
citable and oscillating regimes in the FHN was confirmed
the bifurcation diagram of the moments equations.

In conclusion, the present study improved on the RT
proximation for the derivation of the moments equations
stochastic systems and developed an application for
namely in the analysis of stochastic bifurcations. The
ample presented here was that of the FHN model and
motivated by the fact that stochastic bifurcations in excita
systems such as neurons can play a functional role in si
processing. Nevertheless, the methodology developed is
eral and can be applied to the analysis of noise rela
changes in other classes of systems.
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APPENDIX A: APPROXIMATIONS IN A GENERAL
SYSTEM

Rodriguez and Tuckwell’s approximation. We first r
mind Rodriguez and Tuckwell’s@11# approximation of the
moments. Let us consider ann-dimensional random proces
x(t)5„x1(t), x2(t), . . . ,xn(t)… with a ~close to! Gaussian
pdf p(u,t)5p(u1 ,u2 , . . . ,un ,t). Then, using a second or
der Taylor expansion ofp around its meanm(t), the expec-
tation of an arbitrary functionG(x,t) can be expressed as
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E@G~x,t !#5E E •••E
2`

`

G~u,t !p~u,t !du ~A1!

'G~m,t !1
1

2! (
l 51

n

(
k51

n
]2G

]ul]uk
~m,t !•Clk ,

~A2!

whereClk5E@(xl2ml)(xk2mk)# are the second order mo
ments. This approximate expression for the expectation
at the heart of the RT method@11# because it allows a sys
tematic derivation of the equations for the dynamics of
first and second order moments as a function of only th
same variables.

G method. When the functionG in Eq. ~A1! is a polyno-
mial, its expectation can be expressed exactly in terms of
first and second order moments using the fact that all hig
moments of a Gaussian distribution can be written in ter
of these, as

E@x1x2•••xj #5 (
all pairing

)
( l ,k)

Clk if j is even

50 if j is odd, ~A3!

where we takej /2 ( j .2) pairs of (l ,k) for the product and
all ( j 21)( j 23)•••3•1 combinations of pairs for the sum
mation. In this way, one avoids using Taylor expansions, a
gains higher approximation accuracy.

APPENDIX B: MOMENTS OF THE GENERAL
HODGKIN-HUXLEY-TYPE MODEL

In @13#, Rodriguez and Tuckwell derive the momen
equations for the standard HH equations@17# using the sec-
ond order Taylor expansion mentioned previously. In t
appendix, we consider the case of general HH type equat
of the form:

dV

dt
5(

i
gimi

phi
q~Vi2V!1I 1j~ t !, ~B1!

dx

dt
5ax~V!2gx~V!x, ~B2!

where the variablesV, mi , andhi are the membrane poten
tial, and the activation and inactivation of thei th ion current.
Vi is the reversal potentials andgi5Gi /Cm is the corre-
sponding maximal conductancesGi normalized by the mem-
brane capacitanceCm . p andq are integers that depend oni
(q50 if there is no inactivation!. j(t) represents white
Gaussian noise satisfyingE„j(t)…50 and E„j(t)j(s)…
5s2d(t2s). x in Eq. ~B2! represents gating variables d
noted asmi andhi in Eq. ~B1!. ax(V) andgx(V) are auxil-
iary functions ofV that determine the dynamics of gatin
variables.

We denote the first and second order moments assoc
with the state variables of Eqs.~B1! and ~B2! as V̄, x̄, SV ,
Sx , CVx , andCxy . The moments equations are given by
1-8
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dV̄

dt
5(

i
giE@m̄i

ph̄i
q~Vi2V̄!#1I , ~B3!

dSV

dt
52(

i
giE@~V2V̄!m̄i

ph̄i
q~Vi2V!#1s2, ~B4!

dCVx

dt
5EF ~x2 x̄!(

i
gimi

phi
q~Vi2V!G

1E@~V2V̄!„ax~V!2gx~V!•x…#, ~B5!

dx̄

dr
5E@ax~V!2gx~V!x#, ~B6!

dSx

dt
52@~x2 x̄!„ax~V!2gx~V!•x…#, ~B7!

dCxy

dt
5E@~x2 x̄!„ay~V!2gy~V!•y…#

1E@~y2 ȳ!„ax~V!2gx~V!•x…#. ~B8!

The right-hand sides of the first two equations as well as
first term in the right-hand side of the third one are expec
O

.

ce

s

-
.

nd

.
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tions of polynomials and are therefore entirely determin
using the G method and Eq.~A3!. The remaining terms can
be treated using the Taylor expansion, up to an arbitr
order, and can be expressed as one of the three genera
pansions provided below:

E@g~x1!#5 (
k>0

1

2kk!
g(2k)~ x̄1!R11

k , ~B9!

E@g~x1!x2#5R12(
k>0

1

2kk!
g(2k11)~ x̄1!R11

k , ~B10!

E@g~x1!x2x3#5 (
k>0

1

2k2!
~R11R2312kR12R13!

3g(2k)~ x̄1!R11
k21 , ~B11!

where $xi% form a Gaussian vector with covariance matr
@Ri j #, g is some arbitrary function, andg(k) is its kth deriva-
tive.

In this way, combining the G method and the Taylor e
pansion, one can derive the moments equations, Eqs.~B3!–
~B8!, for any HH type equation up to an arbitrary order.
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